Computers > Intelligence (AI) & Semantics

You are looking at 1 - 3 of 3 items for :

  • Type: Journal Issue x
Clear All Modify Search
Karim Barhoumi, Seung Mo Choi, Tara Iyer, Jiakun Li, Franck Ouattara, Mr. Andrew J Tiffin, and Jiaxiong Yao
The COVID-19 crisis has had a tremendous economic impact for all countries. Yet, assessing the full impact of the crisis has been frequently hampered by the delayed publication of official GDP statistics in several emerging market and developing economies. This paper outlines a machine-learning framework that helps track economic activity in real time for these economies. As illustrative examples, the framework is applied to selected sub-Saharan African economies. The framework is able to provide timely information on economic activity more swiftly than official statistics.
Mr. Jean-Francois Dauphin, Mr. Kamil Dybczak, Morgan Maneely, Marzie Taheri Sanjani, Mrs. Nujin Suphaphiphat, Yifei Wang, and Hanqi Zhang
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.
International Monetary Fund. Strategy, Policy, & Review Department
This paper presents traction as a multidimensional concept and discusses a comprehensive and complementary set of approaches to attempt to measure it based on the Fund’s value added to policy dialogue and formulation and public debate in member countries.