Computers > Intelligence (AI) & Semantics

You are looking at 1 - 2 of 2 items for :

  • Type: Journal Issue x
Clear All Modify Search
Yiping Huang, Ms. Longmei Zhang, Zhenhua Li, Han Qiu, Tao Sun, and Xue Wang
Promoting credit services to small and medium-size enterprises (SMEs) has been a perennial challenge for policy makers globally due to high information costs. Recent fintech developments may be able to mitigate this problem. By leveraging big data or digital footprints on existing platforms, some big technology (BigTech) firms have extended short-term loans to millions of small firms. By analyzing 1.8 million loan transactions of a leading Chinese online bank, this paper compares the fintech approach to assessing credit risk using big data and machine learning models with the bank approach using traditional financial data and scorecard models. The study shows that the fintech approach yields better prediction of loan defaults during normal times and periods of large exogenous shocks, reflecting information and modeling advantages. BigTech’s proprietary information can complement or, where necessary, substitute credit history in risk assessment, allowing unbanked firms to borrow. Furthermore, the fintech approach benefits SMEs that are smaller and in smaller cities, hence complementing the role of banks by reaching underserved customers. With more effective and balanced policy support, BigTech lenders could help promote financial inclusion worldwide.
Majid Bazarbash
Recent advances in digital technology and big data have allowed FinTech (financial technology) lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion. However, machine learning (ML) methods that lie at the heart of FinTech credit have remained largely a black box for the nontechnical audience. This paper contributes to the literature by discussing potential strengths and weaknesses of ML-based credit assessment through (1) presenting core ideas and the most common techniques in ML for the nontechnical audience; and (2) discussing the fundamental challenges in credit risk analysis. FinTech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by (1) leveraging nontraditional data sources to improve the assessment of the borrower’s track record; (2) appraising collateral value; (3) forecasting income prospects; and (4) predicting changes in general conditions. However, because of the central role of data in ML-based analysis, data relevance should be ensured, especially in situations when a deep structural change occurs, when borrowers could counterfeit certain indicators, and when agency problems arising from information asymmetry could not be resolved. To avoid digital financial exclusion and redlining, variables that trigger discrimination should not be used to assess credit rating.