Search Results

You are looking at 1 - 5 of 5 items for :

  • "job task description" x
Clear All
Mariya Brussevich, Ms. Era Dabla-Norris, and Salma Khalid

automation. III. Risk of Automation and The Future of Work for Women A. Estimating the Probability of Automation In this section we analyze how differences in task composition of men’s and women’s jobs translate into their relative likelihoods of being automated by estimating the probabilities of automation at the individual level. The starting point of our analysis is the probability of automation estimates constructed by Frey and Osborne (2017) . These estimates are based on the occupational classification and job task descriptions from ONET and rankings

Mariya Brussevich, Ms. Era Dabla-Norris, and Salma Khalid
Using individual level data on task composition at work for 30 advanced and emerging economies, we find that women, on average, perform more routine tasks than men?tasks that are more prone to automation. To quantify the impact on jobs, we relate data on task composition at work to occupation level estimates of probability of automation, controlling for a rich set of individual characteristics (e.g., education, age, literacy and numeracy skills). Our results indicate that female workers are at a significantly higher risk for displacement by automation than male workers, with 11 percent of the female workforce at high risk of being automated given the current state of technology, albeit with significant cross-country heterogeneity. The probability of automation is lower for younger cohorts of women, and for those in managerial positions.
Mariya Brussevich, Ms. Era Dabla-Norris, and Salma Khalid
Mariya Brussevich, Ms. Era Dabla-Norris, Christine Kamunge, Pooja Karnane, Salma Khalid, and Ms. Kalpana Kochhar
New technologies?digitalization, artificial intelligence, and machine learning?are changing the way work gets done at an unprecedented rate. Helping people adapt to a fast-changing world of work and ameliorating its deleterious impacts will be the defining challenge of our time. What are the gender implications of this changing nature of work? How vulnerable are women’s jobs to risk of displacement by technology? What policies are needed to ensure that technological change supports a closing, and not a widening, of gender gaps? This SDN finds that women, on average, perform more routine tasks than men across all sectors and occupations?tasks that are most prone to automation. Given the current state of technology, we estimate that 26 million female jobs in 30 countries (28 OECD member countries, Cyprus, and Singapore) are at a high risk of being displaced by technology (i.e., facing higher than 70 percent likelihood of being automated) within the next two decades. Female workers face a higher risk of automation compared to male workers (11 percent of the female workforce, relative to 9 percent of the male workforce), albeit with significant heterogeneity across sectors and countries. Less well-educated and older female workers (aged 40 and above), as well as those in low-skill clerical, service, and sales positions are disproportionately exposed to automation. Extrapolating our results, we find that around 180 million female jobs are at high risk of being displaced globally. Policies are needed to endow women with required skills; close gender gaps in leadership positions; bridge digital gender divide (as ongoing digital transformation could confer greater flexibility in work, benefiting women); ease transitions for older and low-skilled female workers.
Mariya Brussevich, Ms. Era Dabla-Norris, Christine Kamunge, Pooja Karnane, Salma Khalid, and Ms. Kalpana Kochhar

Probability of Automation We follow the method employed by Arntz, Gregory, and Zierahn (2017) to link occupation-based estimates of the probability of automation with the task composition and characteristics of individual workers and re-estimate the probability of automation at the level of each individual worker. The estimates for the probability of automation of occupational categories are drawn from Frey and Osborne (2017). Their work uses occupational classification and job task descriptions from O*NET, a database maintained by the US Department of Labor containing