Search Results

You are looking at 1 - 3 of 3 items for :

  • "approach Using DFM" x
Clear All
Mr. Jean-Francois Dauphin, Mr. Kamil Dybczak, Morgan Maneely, Marzie Taheri Sanjani, Mrs. Nujin Suphaphiphat, Yifei Wang, and Hanqi Zhang
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.
Mr. Jean-Francois Dauphin, Mr. Kamil Dybczak, Morgan Maneely, Marzie Taheri Sanjani, Mrs. Nujin Suphaphiphat, Yifei Wang, and Hanqi Zhang

This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning (ML) algorithms to nowcast GDP growth across a heterogenous group of European economies during normal and crisis times. Most of our methods significantly outperform the AR(1) benchmark model. Our DFMs tend to perform better during normal times while many of the ML methods we used performed strongly at identifying turning points. Our approach is easily applicable to other countries, subject to data availability.

Mr. Jean-Francois Dauphin, Mr. Kamil Dybczak, Morgan Maneely, Marzie Taheri Sanjani, Mrs. Nujin Suphaphiphat, Yifei Wang, and Hanqi Zhang

Copyright Page © 2022 International Monetary Fund WP/22/52 IMF Working Paper European Department Nowcasting GDP A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies Prepared by Jean-Francois Dauphin, Kamil Dybczak, Morgan Maneely, Marzie Taheri Sanjani, Nujin Suphaphiphat, Yifei Wang, and Hanqi Zhang March 2022 IMF Working Papers describe research in progress by the author(s)and are published to elicit comments and to encourage debate . The views expressed in IMF Working Papers are those of the author